Novel mutations associated with resistance to Bacillus sphaericus in a polymorphic region of the Culex quinquefasciatus cqm1 gene.

نویسندگان

  • Karlos Diogo de Melo Chalegre
  • Tatiany Patrícia Romão
  • Daniella Aliny Tavares
  • Eloína Mendonça Santos
  • Lígia Maria Ferreira
  • Cláudia Maria Fontes Oliveira
  • Osvaldo Pompílio de-Melo-Neto
  • Maria Helena Neves Lobo Silva-Filha
چکیده

Bin toxin from Bacillus sphaericus acts on Culex quinquefasciatus larvae by binding to Cqm1 midgut-bound receptors, and disruption of the cqm1 gene is the major cause of resistance. The goal of this work was to screen for a laboratory-selected resistance cqm1(REC) allele in field populations in the city of Recife, Brazil, and to describe other resistance-associated polymorphisms in the cqm1 gene. The cqm1(REC) allele was detected in the four nontreated populations surveyed at frequencies from 0.001 to 0.017, and sequence analysis from these samples revealed a novel resistant allele (cqm1(REC-D16)) displaying a 16-nucletotide (nt) deletion which is distinct from the 19-nt deletion associated with cqm1(REC). Yet a third resistant allele (cqm1(REC-D25)), displaying a 25-nt deletion, was identified in samples from a treated area exposed to B. sphaericus. A comparison of the three deletion events revealed that all are located within the same 208-nt region amplified during the screening procedure. They also introduce equivalent frameshifts in the sequence and generate the same premature stop codon, leading to putative transcripts encoding truncated proteins which are unable to locate to the midgut epithelium. The populations analyzed in this study contained a variety of alleles with mutations disrupting the function of the corresponding Bin toxin receptor. Their locations reveal a hot spot that can be exploited to assess the resistance risk through DNA screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of an allele conferring resistance to Bacillus sphaericus binary toxin in Culex quinquefasciatus populations by molecular screening.

The activity of the Bacillus sphaericus binary (Bin) toxin on Culex quinquefasciatus larvae depends on its specific binding to the Cqm1 receptor, a midgut membrane-bound alpha-glucosidase. A 19-nucleotide deletion in the cqm1 gene (cqm1(REC)) mediates high-level resistance to Bin toxin. Here, resistance in nontreated and B. sphaericus-treated field populations of C. quinquefasciatus was assesse...

متن کامل

Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis.

Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin f...

متن کامل

Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae).

The 2362 strain of Bacillus sphaericus, which produces a binary toxin highly active against Culex mosquitoes, has been developed recently as a commercial larvicide. It is being used currently in operational mosquito control programs in several countries including Brazil, France, India, and the United States. Laboratory studies have shown that mosquitoes can develop resistance to B. sphaericus, ...

متن کامل

Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae).

The 2362 strain of Bacillus sphaericus (Bs) Neide is a highly mosquitocidal bacterium used in commercial bacterial larvicides primarily to control mosquitoes of the genus Culex. Unfortunately, Bs is at high risk for selecting resistance in mosquito populations, because its binary toxin apparently only binds to a single receptor type on midgut microvilli. A potential key strategy for delaying re...

متن کامل

Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae.

Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 78 17  شماره 

صفحات  -

تاریخ انتشار 2012